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Detection of Intensity Change Points in Time-Resolved Single-Molecule Measurements
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We present a method for the analysis of optical single molecule emission data that exhibit discrete intensity
jumps. This new method uses a generalized likelihood ratio test that determines the location of an intensity
change point based on individual photon arrival times. This test is applied recursively to an entire single
molecule intensity trajectory, thus finding each change points. Expectation—maximization clustering and the
Bayesian information criterion is then used for accurate determination of the true number of states accessible
to the system. This procedure allows rigorous and quantitative determination of intensity change points without
the artificial time resolution limitations that arise from binning and thresholding.

1. Introduction

Complex systems generally exhibit a broad distribution in
both their dynamic and static properties. As such, their properties
are significantly obscured by the ensemble average. Time-
resolved optical single-molecule spectroscopy is particularly well
suited to the study of these systems.! However, the Poisson
detection noise inherent in such measurements severely com-
plicates analysis and interpretation.? In this context, the deter-
mination of intensity change points is worthy of particular study,
since available methods often involve subjective parameters and
are not statistically robust.

Intensity change points, discrete jumps in detected intensity
followed by some period of constant intensity, occur in many
systems and often arise from processes that occur much faster
than the time scale of measurement. Although these events are
rare on the molecular time scale, they are often the key to a
complete understanding of the underlying dynamics. For
example, intensity traces from individual semiconducting nano-
crystals display an intermittency not seen in bulk measurements.
This intermittency is thought to result from Auger ionization.>~®
In biological macromolecules, single-molecule fluorescence
studies reveal sudden jumps in detected fluorescence intensity
during enzymatic reactions and structural changes.””!3 Studies
of these transitions between relatively stable molecular states
have the potential to greatly increase our understanding of
enzymatic dynamics and reactivity. Since molecules are studied
one at a time, heterogeneous interactions between the molecule
and its host environment can be observed. These heterogeneities
can be observed in systems as simple as single fluorescent dyes
and can be manifested as precipitous changes in optical signal
due to electronic, structural, or orientational transitions.'423

The simplest and most commonly used technique for the
analysis of intensity change points, binning and thresholding,
presents numerous difficulties. In this method, the photon arrival
times are binned or filtered so that an average intensity is
generated for each bin. This step is necessary to reduce the
Poisson counting noise to a level where individual emissive
states can be resolved. The choice of a bin width, however,
introduces an artificial time scale to the measurement and raises
the possibility of missed transitions due to the information lost
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Figure 1. (A) 2-ms binned trajectory. (B) 10-ms binned trajectory.
(C) 20-ms binned trajectory. (D) Photonby-photon reconstructed single-
molecule intensity states. (E) “True” intensity states used in simulating
panels A—C. The intensity distribution histograms are shown to the
right of each panel, with the number of bins given by the usual rule
Nuins = logz N + 1. The solid lines overlaid on the histograms are density
estimation using Gaussian kernels, with the smoothing parameter
determined in the same way. The trajectory was simulated as described
in section 3.2.

in each bin. Thresholds are then assigned based on the acquired
data, often by visually examining the binned single-molecule
trace. Change points are then considered to occur wherever the
averaged intensity crosses this threshold. This threshold-based
analysis unfortunately requires knowledge of the number of
available states for the molecule. A hard threshold is also
vulnerable to the detection of false transitions (see Figure 1).
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This problem is exacerbated when the signal-to-background ratio
is low. The simulated 5-state single-molecule trace in Figure 1
illustrates these difficulties. The 2-ms binned trajectory in panel
(A) appears very noisys; its intensity histogram in no way reflects
the existence of 5 states. Further averaging, as shown in the
10-ms and 20-ms binned traces in panels B and C, reduces the
extent of noise but does not help in the elucidation of change
points. The underlying dynamics are not evident from any of
the binned trajectories, and none of the binned trajectories allow
for analysis of change points by thresholding. Furthermore, there
is the issue of time resolution. Binning the data unnecessarily
restricts measurement time resolution. Fast transitions are
averaged out, whereas small and slow transitions are still lost
in the noise. These concerns emphasize the need for quantitative,
statistically robust methods of analysis. Indeed, although much
progress has been made in experimental techniques,?*> the
experimentalist is still faced with a dearth of rigorous methods
for extracting information from a data set that is both limited
in size and degraded by photon detection noise.

A method based on hidden Markov models has been proposed
to extract kinetic parameters directly from unbinned photon by
photon single-molecule trajectories.? This method achieves high
time resolution, but it requires knowledge of the underlying
kinetic scheme. For a data reduction procedure to be broadly
applicable, it should be free of physical models such as a kinetic
scheme. In addition, it should be objective so that no bias is
introduced through user-adjustable parameters as in the afore-
mentioned thresholding scheme. Since there are only a limited
number of detected photons from a given single molecule, the
method should be efficient so that each detected photon is taken
into account. Finally, it should be quantitative so that a
confidence interval can be associated with derivative parameters
such as the lifetime of a particular molecular conformational
state. Along this line, we have recently reported a method for
the quantitative analysis of continuous dynamics from time-
resolved single-molecule emission trajectories.?” On the basis
of information-theoretical considerations, we derived a basic
equation that relates measurement uncertainty and time resolu-
tion. This general relationship allowed the formulation of an
efficient algorithm that reaches the theoretical limit, extracting
the maximal amount of information of the underlying dynamics
one photon at a time. Continuing our effort to develop general,
model-free methods to uncover molecular processes in time-
resolved single-molecule experiments, this paper describes a
technique for determining transition points and intensity levels
from a photon-by-photon emission trajectory.

The main result of this work is presented in Figure 1D. The
method developed allows quantitative recovery of the underlying
intensity levels and change points in a single-molecule measure-
ment. The first step, identification of intensity change points,
may be achieved using a generalized likelihood ratio test.
Incoming photons will be Poisson distributed. As such, the
probability that the observed data contain an intensity change
point may be calculated and compared to the probability that
the data contain no such change point. With this treatment, a
confidence level for the presence of the change point is also
determined, as well as a confidence region for the position of
the change point. This methodology is applied to the trajectory
as a whole. It is recursively segmented until no more change-
points are detected. Thus, both the number and the location of
intensity changes are determined.

To further refine the analysis, we next consider possible
groupings of the detected states. The n change points define n
+ 1 different intensity states in the trajectory. Some of these
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Figure 2. (A) A typical photon-by-photon recording scheme that marks
the chronological photon arrival times {#}, the inter-photon time
durations {A;}, emission intensity change points {c;}, and the time
durations {7} for which the single molecule maintains the same
emission intensity. (B) A simulated single-molecule trajectory (total
2372 photons) showing a sudden intensity change from /; = 1.5 kcps
to I, = 3.0 keps at 7, = 0.8283 s (the 1318-th photon). Poissonian
counting noise is evident in the 10-ms binned trajectory. As a
comparison, the “true” trajectory is also displayed but offset and scaled
for clarity.

apparently different intensity levels may arise from identical
emissive states in the molecule under observation. This hypoth-
esis is quantitatively assessed and the two intensities most likely
to be identical are assigned to the same state. This procedure is
repeatedly applied until all intensity levels are clustered into
the same state, resulting in a hierarchy of clustered intensities.
The true number of states in the system is then determined by
application of the Bayes information criterion.

The result of this analysis is an accurate determination of
the true number of states available to the system under study
and the timing of transitions between them. This treatment is
independent of externally imposed time scales and free of kinetic
models. All of the change points are accompanied by a
calculated confidence interval. The details of the above-outlined
theoretical development are described in section 2. Its perfor-
mance is evaluated using computer simulations and discussed
in section 3.

2. Theory

Thorough analysis of a time-resolved single molecule trajec-
tory with intensity change points involves two critical issues.
First, the change points must be located and assigned signifi-
cance levels and confidence intervals. Second, once the change
points have been found, the total number of molecular states
and the intensity of each state must be identified. These issues
are nontrivial if they are to be resolved quantitatively, especially
in high time resolution single-molecule measurements. We
utilize ideas from statistical testing theory and from information
theory to outline a systematic approach that addresses these
issues.

2.1. Basic Considerations. Though the general ideas outlined
in this article are applicable to most time-resolved single-
molecule measurements, we focus our discussion on the use of
photon-by-photon detection/registration methods since they
provide the highest time resolution (also see Watkins and Yang?’
for a brief overview). Figure 2A illustrates the recording scheme
of a typical photon-by-photon single-molecule experiment. If
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the molecule is in a certain state j that exhibits a constant
detected emission intensity /;, photon arrival times will be
Poisson distributed. For most detectors capable of registering
single photon arrival times (such as avalanche photodiodes and
photomultiplier tubes), dark counts will also be Poisson
distributed and are thus naturally included in this treatment. The
probability density function for recording an inter-photon
duration A, is then given by the exponential distribution

fAz ) =Le ™ (1

The change point ¢; is defined as the time at which the emission
property of the molecule in question changes from I; to Ij+;.
The probability of detecting n; photons within a time period 7;
between cj—; and ¢; is given by the Poisson function
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The maximum likelihood estimate (MLE) of the intensity is ij
that maximizes the likelihood function eq 2 given n; and T;. It
can be readily computed to be [; = n;/T;. Intuitively, the longer
the observation (7)) is made or the more photons (n;) are
collected, the better }j can be measured. These intuitive ideas
are quantitatively expressed using principles from information
theory to compute the Fisher information?® of I;, the amount of
information about /; that is available from the given data set.
This will allow estimation of the uncertainties associated with
1j.

The Fisher information quantifies the knowledge of a physical
parameter (/;) that can be drawn from experimentally measured
quantities (n;). The distribution of experimentally measurable
n;jis given by the likelihood function g(n; I, T), the probability
that the observed number of photons observed in a time interval
T will be n, given that the molecule is in a state with detected
intensity /. The Fisher information is given by

50 = (ntstni 1. 1))

where (+++),, denotes the expectation value weighted by the
likelihood g(n;; I;, Tj) over all possible n;. Uncertainties in
measuring / may be expected to be related to the Fisher
information since, intuitively, / can be determined more
accurately if more information about / can be obtained. This
qualitative understanding is quantitatively expressed by the
Cramér—Rao—Fréchet bound?—3!

d(Est(]))

var(l) > (

where (Est(I)) is the expectation value of 7 from the estimator
Est. For an unbiased estimator, with (Est(/)) = I, the Cramér—
Rao—Fréchet inequality states that the variance of the best
possible estimator of / is given by the inverse of its Fisher
information matrix. In general, the maximum likelihood estima-
tor (MLE) is a good starting point because it is asymptotically
normal (Gaussian) under most conditions. The Fisher informa-
tion of the estimated fluorescence intensity ij is

JF(}j) = ((0g(n;: I, T,)/81j)2)4f| =T /}j =T/In,

The best attainable variance of /; is then given by
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Equation 3 allows a quantitative assessment of the uncertainties
with which a single-molecule intensity time trajectory is
measured. For example, application of eq 3 shows that only
100 photons must be collected to measure an intensity to within

a relative standard deviation of 10%.

2.2. Detection of Fluorescence Intensity Change Points.
Identifying the times or photon indices at which a single
molecule changes its emission pattern can be viewed as a variant
of the “change point” problem in statistics.>> Here we treat the
detection of intensity change points as a hypothesis test problem
and develop a generalized likelihood ratio test that uses all of
the available photon arrival time information.>>3* This test is
both powerful and straightforward to implement. The statistical
analysis that follows only considers trajectories with single
change points. However, an intensity trajectory may contain
many change points. The recursive algorithm for detecting all
of the change points in a trajectory was constructed with this
in mind. Once approximate change point locations and critical
regions have been identified, the calculations are repeated using
intervals containing only one change point.

This treatment is only applicable to scenarios where the
intensity trajectory is recorded in terms of individual photon
arrival times. For experimental schemes that measure signals
at a fixed integration time, the expressions derived by Boud-
jellaba et al.>> may be used to find change points. We emphasize
that, when applying this method to experimental data, the usual
type of one-standard deviation (or 69% confidence interval) is
not applicable because the underlying error distribution is not
Gaussian. Nevertheless, we include in some of the figures plots
that correspond to 31% error rate simply as a reference point.

2.2.1. Photon-by-Photon Generalized Likelihood Ratio Test.
Suppose that, in a trajectory of N photons and time duration 7,
a molecule suddenly changes its state such that the detected
emission intensity experiences a jump at time f. (cf. Figure 2B).
The presence of a change point is clearly indicated when the
data is binned, but the exact timing of the change is not clear.
To test for the existence of a change point at any proposed
photon £, the trajectory is divided at k into segments of length
Ty and Ty, containing k and N — k photons, respectively. Two
hypotheses, Hy and H,, must then be considered. Hypothesis
H states that there was a change point at time #.. The likelihood
L, of hypothesis Hy is given by the Poisson distribution, eq 2

Hy: I(1) == =1(ty) =1, = [(1;,) = == =1(ty) = 1,
L, =gk 1, T)S(N — k; I, Ty_p)

B (}lTk)k efiln (}2Tka)N7k eﬁzTH

k! (N-k)!

The intensities il and }2 are estimated from the trajectory as
discussed in section 2.1, since they are not known a priori.
Hypothesis Hx must be compared with the null hypothesis H,,
which states that there is no change point at time #.

Hy I(t) = 1(ty) =+ = I(ty) = I,

L,=g(n; io’ Tg(ny; }0’ Ty

_ (}OTk)k e*?I(JTk (}OTNik)N*k eiiUTN*k

k! (N — k)

where Iy is the average intensity of the entire trajectory.
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Figure 3. Error rates as a function of the test point k under the null
H, hypothesis in which there is no change point. In this simulation, a
total of 100 000 traces of 200 exponentially distributed random number
were generated and analyzed. The type-I error rate o is set to 0.05 in
the analysis.

To compare the likelihood of Ha over H,, we compute the
log likelihood ratio of the two hypotheses

<)o_1

01Tk)k e_?lTk(izTka)N_k e—?ZT,H
2= In— ——— ——
k (IOTk)ke IOTk(IOTNik)N ke ToTvx
Upon substitution of the estimates 1 = kIT,, }2 = (N — k)/

Tn—k, and Iy = NJ/T, this yields the simplified expression

o a1k _ N—k
7o 2klnvk+2(N k)lnl_Vk

—2NInN (4

where V), = T}/T. Note that this ratio is a function of the index
k. This ratio is a measure of the likelihood that there was a
change point at k. The most likely location of the change point
is at the maximum of the log-likelihood ratio as a function of
k

J— ale}

Zy= max {73} 6))
This test, while identifying the most likely k for a change point,
does not prove that a change point is present. To assess whether
a change point occurred, the critical value 77_, must be
calculated. Here o is the probability of type I error (a false
positive). When Z3, the maximum value of (7, is greater than
7]_,, a change point is considered to occur with a probability
o that this is a false positive. On the other hand, no change
point occurred if Zy < 77_,. The critical values 77_, of ZY are
not known analytically, but they can be calculated using a
recursive algorithm due to Noé.3¢ Computational details for the
present application are described in Appendix A.

Equation 5 does not have a uniform error rate across the entire
trajectory because MLE values of emission intensities are used
in the likelihood ratio tests.’”-3® Very few photons are available
for estimation of I; (I2) when k is close to the beginning (end)
of the data sequence. The uncertainty associated with such an
estimate is therefore greater, resulting in higher error rates at
both end points. This is illustrated by a simulation shown in
Figure 3. The nonuniformity in error rate can be alleviated by
standardization and weighting of the likelihood ratio function,
as originally proposed by Henderson. In this implementation,
which still relies on the fundamental Poisson statistics discussed
above, the null hypothesis is rejected when the test statistic
becomes

Zy= max Wit wi= max Witz14 (©6)
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where Wy = (1/2) In[4k(N — k)/k?] is Henderson’s weighting
function and 7, = (/7 — EL/fD/ok is the standardized log

likelihood ratio with E[/f] and oy being the expectation value
and standard deviation, respectively. Following Henderson

Li- B =
—2k InV,, + 2k, — 2(N — K)In(1 — V,) + 2(N — k)up_,

where u = E[InV,] = —X/_ (1/j) and uy— = E[In(1 — V)] =
—3/7¢_«(1/j). The standard deviation is

o =4k, + 4N — k)*vy_,” — 8k(N — k)é

where & = /6 30" (1), v; = T (17, and vy, =
Z]’;_Al,,k (1/%). The critical regions 7,—q, defined by the null
probability error rate

P/, <7, ok=1,..ND=1-a 7

can also be computed using Noé’s algorithm as outlined in
appendix A and are listed in Table 1. Equation 6 gives a more
uniform empirical error rate as shown in Figure 3. For this
reason, eq 6 will be used as the test statistic for the remainder
of this article. The critical region defined by 7, gives type I
error with probability a. For instance, if oo = 0.05, the change
point selected by the likelihood ratio test eq 5 has a 5%
probability of being a false change point. A preliminary
evaluation of the accuracy of the likelihood ratio test in selecting
the change point is presented in Figure 4.

Type I error alone does not completely characterize intensity
change point detection. Nothing is said about the probability
of missing a change point or about the accuracy with which
the intensity change point is located. The probability of missing
a change point is related to the power of a test. For instance, if
the power of a test is 0.9, then the probability of missing a
change point is only 10%. The power of change-point detection
in our implementation was characterized by simulation of 200-
photon trajectories with one change point occurring at ¢ = 100.
The results are summarized in Figure 5. Our simulation indicates
that for a sample size of 200 data points with one change point,
at least 95% of the intensity jumps with size I/} = 2 will be
detected. Furthermore, the 799 curve indicates that as the jump
size increases to I»/[; > 2.5 nearly 100% of the intensity jumps
are detectable, with a very small 1% probability of assigning
an erroneous change point. This is reasonable. A change point
from I, to I; should be easier to detect if the relative size of the
intensity jump is greater.

It is also possible to determine the confidence interval for a
change point from the data. The change point was found by
determining where in the trajectory the null hypothesis could
be rejected. The confidence region C;—g is defined as the region
around the change point where the change point hypothesis Hj4
cannot be rejected with probability 3.3* That is, every photon
for which hypothesis H, is more than 31% likely to be true is
within the 69% confidence region Cgy

C 4=
[k Pr(/,, < T 4 T)PHS < T, 4JT—T) = 1— B} (8

where m € {1..k} and m" €{k + 1..N}. In principle, the
confidence region can be found by direct evaluation of the above
equation. The computational cost for this approach, however,
is too high to be practical. Worsley?” conducted numerical
simulations to evaluate eq 8 for exponential distributions over
all k, Ty, and T at fixed N and found that the maximum occurred
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TABLE 1: Level o and S Points for Intensity Change Detection Using Eqs 6 and 9

N T69 ‘L'gg T9o ‘L';U T9s Tf)s T99 T(I)Q
10 6.266 5.710 4.075 3.539 3.112 2.602 1.462 1.052
20 6.903 6.434 4.625 4.191 3.620 3.214 1.881 1.561
30 7.208 6.791 4.890 4.511 3.866 3.512 2.087 1.809
40 7.398 7.017 5.057 4.713 4.021 3.701 2218 1.966
50 7.533 7.179 5.176 4.857 4.131 3.836 2311 2.079
60 7.635 7.303 5.266 4.968 4.216 3.939 2.383 2.165
70 7.717 7.402 5.338 5.056 4.283 4.021 2.441 2.234
80 7.784 7.484 5.397 5.128 4.339 4.089 2.488 2.291
90 7.841 7.553 5.448 5.190 4.386 4.147 2.529 2.339

100 7.889 7.612 5.491 5.243 4.426 4.196 2.564 2.381

250 8.246 8.049 5.810 5.634 4.726 4.562 2.823 2.691

500 8.451 8.300 5.996 5.859 4.902 4.774 2.976 2.872

750 8.551 8.422 6.086 5.969 4.988 4.878 3.052 2.961

1000 8.614 8.498 6.144 6.039 5.043 4.944 3.100 3.018

at k =1 and T, = T/N. This observation allows the calculation
of a conservative 1 — f confidence region around a change
point ¢ by

Cip=1k Zy— 1, = Ti_ﬁ} )
That is, plotting /% as a function of &, the S confidence region
consists of photon indices {k} that give /% values that are greater
than Zy — 7}_. Calculation of 7}_g (cf. Table 1) is also carried
out using Noé’s algorithm, detailed in Appendix A.

To characterize the performance of the approximation, eq 9,
we have used computer simulations to evaluate its accuracy.
The results, summarized in Figure 6, suggest that for high-power
change point detections (power > 0.9), the critical region defined
by eq 9 is indeed a conservative overestimate of the true
confidence interval. For lower-power change point detection,
however, eq 9 underestimates the confidence interval.

Equations 6 and 9 allow us to find the single-molecule
intensity change points by analyzing the available data photon
by photon and compute the statistical significance of the change
points. They are summarized in Figure 7 using the time trace
in Figure 2B as an example. As illustrated in Figure 7, our
detection scheme finds the correct intensity transition point to
within 9 photons (or 2.5 ms) for this particular data set.
Moreover, it allows the assignment of statistical significance
to the change point, allowing the experimentalist to quantita-
tively assess the validity of the analysis.
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Figure 4. Empirically determined standard deviation of detected
intensity change point as a function of the size of intensity change
under the alternative H, hypothesis in which there is exactly one change
point. In this simulation, a total of 100 000 traces of 200 exponentially
distributed random number were generated and analyzed with the
change point occurring at the 100-th point. Four different type-I error
rates were used in this analysis: o = 0.31, 0.1, 0.05, and 0.01. The
standard deviation is also independent of the direction of an intensity
jump.

2.2.2. Implementation. In general, a single-molecule time
trajectory may contain multiple intensity change points. To find
all of the significant change points, we use a recursive binary
segmentation algorithm. First, a change point is found by
applying eq 5 to the entire single-molecule time trajectory. The
maximum of the log-likelihood ratio, eq 6, is considered as a
change point and its confidence interval is found using eq 9.
The left (right) confidence bound is then held as one end point,
with the start (end) of the trajectory serving as the other end
point. The search for change points is continued in the left (right)
daughter set (cf. Figure 11A). This procedure is repeated
recursively until no further change points are found.

Equations 6 and 9 assume that only one change point is
present between the two end points. Therefore, a new interval
is defined for each change point, using the previous and
subsequent change points as end points. The location, and
confidence interval of each change point are then recalculated
using this interval. Spurious change points that do not meet the
selection criteria are eliminated. Change points thus determined
and their statistical properties are stored for the next stage of
calculations.

The trajectory shown in Figure 1 containing multiple change
points is used to illustrate the application of the binary
segmentation algorithm. Once the change points are located,
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Figure S. Detection power as a function of the size of intensity change
under the alternative H, hypothesis in which there is exactly one change
point. In this simulation, a total of 100 000 traces of 200 exponentially
distributed random number were generated and analyzed with the
change point occurring at the 100-th point. The critical regions for type-I
error used in the analysis are indicated by 7,4, where 1 — o0 = 0.69,
0.90, 0.95, and 0.99. 90% and 95% detection power are indicated by
dashed lines. For example, to achieve 90% detection power, the
minimum /,/I, ratios are ~1.5 for oo = 0.31, ~1.66 for oo = 0.1, ~1.72
for o = 0.05, and ~1.9 for oo = 0:01. As expected, the detection power
=1 — a at I/I; = 1. Furthermore, the detection power is independent
of the direction of an intensity jump. That is, power(/;/I;) = power-
(/).
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Figure 6. Empirical evaluation of the accuracy of confidence intervals
calculated from eq 9. The solid curves represent the probability that
the detected change point lies within the calculated confidence interval.
In this simulation, a total of 100,000 traces were generated of 200
exponentially distributed random numbers with the change point
occurring at the 100th point. An a = 0.05 critical region for type I
error used in the analysis. For reference, horizontal dashed lines are
drawn at the true confidence levels 0.69, 0.90, 0.95, and 0.99. The
confidence region is also independent of the direction of an intensity
jump.
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Figure 7. (A) Plot of (4 as a function of the chronological photon
arrival time of each detected photon using the data from Figure (2).
The critical region was found to be 795 = 6.343 (— —) given a = 0.05.
The change point was found to be ¢ = 1301 (¢, = 0.8247 s), compared
to the true location of ¢™® = 1310 (#yue = 0.8272 s). The detection
power was found to be 1.00. (B) Reproduction of Figure 2B for
comparison. The “true” location of intensity jump and inferred 95%
confidence interval C,-g are indicated as vertical and horizontal bars,
respectively.

the intensity levels can be determined using the maximum
likelihood estimator (?j = n;/T;) discussed in section 2.1. Figure
8 displays a reconstructed intensity trajectory for the data shown
in Figure 1. A total of 125 statistically significant change points
are found to give 126 different apparent intensity levels. The
number of intensity states that give rise to the observed intensity
levels still remains to be found, as well as accurate values for
the emission intensities of those states.

2.3. Determination of the Number of States and Intensity
Levels. A popular approach to determining the number of
emission states and intensity levels is to build a histogram of
the intensities within a single molecule emission time trajectory.
This approach may work for systems that contain 2 or 3
emission states whose intensities are well separated, but it loses
value if more states are involved or if the intensity levels are
not well separated, as in the example of Figure 1. The above-
discussed photon-by-photon change point determination greatly

Watkins and Yang

200

o 150
€
3
Q
o

< 100
[e}

i JLH

<
[*%

50

0

1 2 3 4
time (s)

Figure 8. Single-molecule emission time trace (offset by 50 and scaled
to a 5-ms bin time) inferred from the simulated data in Figure 1 using
generalized likelihood ratio test. The 5-ms binned raw data are also
shown as a comparison. The intensity bursts seen in the inferred
emission time trace are examples of “shot” counting noise arising from
short resident time at a given state.

simplifies the task, but difficulties remain. The Poisson statistics
of photon detection and the unknown underlying dynamics that
govern the emission states make it difficult to ascertain the
number of molecular states and their corresponding intensity
levels. For example, sudden intensity bursts may arise from
states of short residence time as seen in Figure 8; they will need
to be treated in a statistically robust way. Here we develop a
model-based clustering analysis method that simultaneously
determines the number of molecular states and their emission
levels. Following the ideas of Fraley and Raftery,3° photon-by-
photon determined intensity levels are classified into groups
using an agglomerative hierarchical clustering algorithm. This
clustering algorithm is highly sensitive to initial conditions, so
the results can only serve as an initial guess for more advanced
analysis. The results are further refined using an expectation-
maximization procedure in which each intensity level I; is
assigned a weighting coefficient p,,; that describes the probability
that it belongs to the mth state out of a total of n states. These
intensities and probabilities are calculated for all possible
numbers of states, ranging from one state to the total number
of detected change points. Finally, we use the Bayesian
Information Criterion to quantitatively determine the minimum
number of states required to fit describe the data.

2.3.1. Initial Classification by Agglomerative Hierarchical
Grouping. Consider an exponential mixture model that allows
classification of single-molecule observations, photon by photon,
into different intensity levels. The likelihood function for the
entire single-molecule time trace is

N
LAAY: L oA vy o v = [ (A 1)
i=1

where G is the number of distinguishable intensity levels and
y;i is the classification, or grouping, of the ith photon into the
yith intensity group. The change-point detection procedure
discussed in section 2.2 provides a means with which the initial
photon-by-photon intensity classification is accomplished. For
J detected intensity change points, this initial grouping yields
(J + 1) possible intensity levels {}j} with variance {n; /TJQ.}, j=
1..J + 1 (cf. eq 3). In this classification scheme, the data set
{A;} is formed by sampling n; observations (photons) separately
from the jth intensity component. Under this scheme, the
classification log-likelihood function takes the form

G
LAY L I =3 Y Inf(As L) (10)

J=1 iel;
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where G is the number of groups and J; is the set of photon
indices that belong to the j-th intensity level. Based on this
likelihood expression, the G intensity levels can be classified
into Gmax groups via an agglomerative hierarchical algorithm
first proposed by Ward.*

At each stage of the agglomerative hierarchical clustering
procedure, the number of groups contracts from G to (G — 1)
by merging two groups of similar properties. No conclusions
are drawn about the actual number of states in the system. The
only result of this procedure is a hierarchical list of the intensity
levels that are most likely to have arisen from the same emissive
state of the experimental system. Many approaches to clas-
sification and clustering have been proposed and studied as
recently reviewed by Fraley and Raftery.*! The established
formulations, however, are not directly applicable to the analysis
of single-molecule data.

To treat the problem in a manner consistent with that of
change-point detection (cf. section 2.2), we consider a merit
function based on maximizing the likelihood ratio of grouping.
Our treatment closely follows that of Scott and Symons who
derived likelihood ratio criteria for Gaussian models.*? Here the
exponential distribution of eq 1 is used to model photon-by-
photon detection. Let the merit function M;,,, be the likelihood
ratio of contracting from G groups to (G — 1) groups by merging
the mth and the jth groups. Using eq 10, the log-likelihood ratio
merit function is

M<]m> /) ({A} Il’ cery IG) - "}/)C({Ai}; Il’ ceey I(/»m>’ cery IG*I)

=, +n)l i 14 o o 11
=(n, nj)nTm+Tj nmnfn njnTj (11

Thus, for each stage a merit matrix is built, composed of the
elements M;;,». The two groups to be merged are the j and m
that give the maximum M;;,,y. The number of photons 7, and
time duration Tj, of the newly merged group are updated
according to

n, =n+n, (12)

Equations 11—13 form the basis for fast computer algorithms.*3
Initially, all of the G = J + 1 intensity levels are treated as
distinct groups. The hierarchical clustering gives a picture of
the grouping of intensity levels as a function of the total number
of independent intensity states, recording the intensity-level
partitionings for all G < Gy for further refinement by EM
clustering described below.

2.3.2. Refinement by Expectation—Maximization Clustering.
As previously mentioned, the agglomerative hierarchical cluster-
ing procedure performed above is very sensitive to initial
conditions, but it serves as an initial guess for more advanced
clustering schemes. Further improvement of the partitioning of
the {Ii, ..., I;+1} intensity levels 1nt0 G = 1...Gmax groups, as
well as the estimation of {I Iy .. I(;} is accomplished by the
expectation—maximization procedure of Dempster, Laird, and
Rubin.* This procedure assigns a probability for a certain time
interval, defined by the change points previously located, to
belong to a certain group. The group of maximum probability
is considered to be the correct group for that particular time
interval.

Let p,,; be the probability of assigning /; to the mth group.
Then the initial guess for the expectation-maximization
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Initialize py,; according to Eq. (14).
repeat

M-step: compute parameter MLEs given
Pmj

o T — Z]J+11 PmjT;
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E-step: compute p,,; given the M-step
MLEs
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until pr,; is converged.

Figure 9. EM algorithm for single-molecule intensity level clustering.

procedure is based on the result of the agglomerative hierarchical
grouping

1
pmj_ 0

The probability density of observing I; given p,,; is HZZI g(ny;
Iy, Tj)Pmi. Assuming that {p,,;} are drawn from independently
and identically distributed multinomial distributions, the com-

if /; belongs to the mth group
otherwise

} (14)

plete likelihood function for the observation of {Ii, ..., Iy+1} is
J+1
L(Ija P p,,,, , T ) = H H[pmg( m’ j)]pm/
j=1 m=1

where p,, is the probability of drawing an I; from the mth
intensity level, n; and 7} are respectively the number of photons
and time duration between the (j — 1)th and the jth change
points. The log-likelihood function to be maximized is

J+1
Ll P P L T,) = me,ln[pmg< w )1 (15
=1 m=1
For the model in eq 15, p,,; is calculated as p,,; = E[pmj|{1 I

T, I,] and can be understoog as the conditional expectation
value given the observation {/;} and the associated parameter
values T, and I,,. The jth intensity segment may come from
one of the m = 1 to G intensity states. Under the multinomial
framework, the probability for the jth segment to come from
the mth intensity state is then as displayed in Figure 9.

The EM procedure iterates between the E step, where the
expectation values {p,;} are computed from the data using
estimated parameters, and the M step, where the parameters are
estimated by maximizing the likelihood function eq 15. An EM
algorithm for clustering single-molecule intensity levels is
outlined in Figure 9.

2.3.3. Determination of Number of States Using the Bayesian
Information Criterion (Schwarz’s Criterion). Although the
grouping of intensity levels has been optimized using the EM
algorithm, the number of molecular states remains unknown.
Generally, one is interested in the minimal set of parameters
required to describe the data. Unconstrained maximization of
the likelihood function usually results in models that contain
more groups (one of the parameters in this treatment) than the
true number, over fitting the data. This is clearly undesirable.
To quantitatively assess the minimum number of parameters
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required to accurately fit the data, we use a Bayesian approach.
This method has deep connections to other information theoreti-
cal concepts such as minimum description length and Kolmo-
gorov complexity.* Casting these ideas in a framework
consistent with the above-discussed likelihood ratio test results
in a penalized maximum likelihood estimator. The maximum
likelihood estimator is penalized by an amount proportional to
the information added when the number of adjustable parameters
is increased. This approach has been shown to predict a number
of states that is at least as large as the correct one.*® Furthermore,
as the number of data point increases, it asymptotically
converges to the correct number of states. Formally, the integral
to be maximized is

pAAY,m) =p,m) [o_[o pitA}Op, O mIp, X
(00p|98m, m)pp(Hemlm) dé,., dGCp

Here O, and O, represent the parameter spaces for the number
of change points and the number of distinct intensity levels,
respectively, 0, and O, are specific realizations of those
parameters, and the integrals are performed over the entire
parameter spaces, which may change as a function of the model
m (the number of intensity levels). The integrals may be
evaluated for large N and N, first over ©p and then over O,
using an approximation due to Schwarz,*#7 giving

Inp({A;}, m) =27, — 2ng — 1) In N, —N,InN (16)

where N, is the number of change points detected, ng is the
number of groups, and /¢ is the log-likelihood given in eq 15.
Equation 16, often called the Bayesian information criterion
(BIC), is a measure of how much experimental evidence favors
the model. The first and second terms are clearly dependent on
the model chosen. The third term is also dependent on the model
because the choice of a lower number of intensity states will
reduce the number of detected change points, as consecutive
states are assigned to identical intensity levels. Using the
numerical data in Figure 1 as an example, Figure 10 shows BIC
values plotted as a function of the number of groups G. There
is a maximum at G = 5, correctly selecting the number of
groups. This, as well as the computational studies detailed
below, indicate that both the number of change points and the
number of photons are large enough to satisfy the requirement
of large N for the Schwarz approximation.

Once the number of intensity levels is determined using BIC,
the time evolution of a single-molecule intensity trajectory can
be reconstructed photon by photon. Shown in Figure 1D is a
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reconstructed single-molecule trace using the numerical data
in Figure 1. The distribution of molecular states shown to the
right of the trajectory is quantitatively reproduced. The recon-
structed trajectory also reproduced features seen in the true trace
in Figure 1E. As clearly demonstrated in Figure 1, our method
based on quantitative statistical analysis is superior to the
heuristic, but popular, binning-thresholding approach.

3. Discussion

3.1. Resolving Power of Change Point Determination. As
implied in Figures 5 and 6, the accurate inference of an intensity
change point critically depends on the quality of data. For
example, if the magnitude of an intensity change |I, — ;| is
small, a change point is less likely to be detected. Furthermore,
if an intensity change point occurs very close to the preceding
one, say 10 photons away, it is less likely to be resolved from
the previous one. Broadly, this is because such an intensity
change is difficult to distinguish from Poisson counting noise.
This can also be understood in terms of the information available
to estimate the true intensities /; and />, as discussed in section
2.1. That is, the accuracy with which /; and I, can be estimated
in applying the generalized likelihood ratio test depends on the
number of photons available.

To further characterize our method, we define the resolving
power as the probability of detecting two change points which
are well enough separated that their one standard deviation
confidence intervals do not intersect. For the binary segmenta-
tion algorithm used in our method, the resolving power may be
computed as the probability of detecting a change point with a
69% confidence interval that does not include the end points in
a one-change point trajectory (cf. Figure 11A).

Intuitively, one would expect that more photons (greater k
and n) will be needed to resolve change points with small
intensity jumps, and only few photons will be needed to resolve
large intensity jumps. In other words, very fast state-switching
dynamics can be resolved if their emission characteristics are
markedly different. To put these ideas in a more quantitative
framework, we compute the resolving power using computer
simulations. Representative results are displayed in Figure 11B—
E. As an example, for very small intensity jumps (l/I; = 1.5,
Figure 11B) in a 400-photon segment, an intensity change point
must be at least 114 photons away from either end point to be
detected with a probability greater than 90%. On the other hand,
for greater intensity jump steps say, I»/[; = 5 in Figure 11E,
only a total of 20 photons are needed to resolve change points
that are 10 photons apart with a >90% certainty. Therefore,
the accuracy with which change points are located depends on
the quality of data and on the dynamics that underlie the time-
dependent emission characteristics.

3.2. Performance of Our Method. To assess the performance
of our method, simulations were performed as follows. Intensity
levels were assigned based on a uniform distribution between
500 and 10 000 photons per second, with a ratio of at least 1.5
between successive intensity levels. The duration of each state
was constrained to be at least enough to achieve 95% resolving
power. This constraint is reasonable since, for example, given
two states with an intensity ratio of 5.0, any transitions between
them would be separated by only 13 photons. This number
increases with decreasing intensity ratio. In the most extreme
case, two states with an intensity ratio of 1.5 require that their
transitions to be separated by 200 photons. Based on these
conditions, a photon by photon intensity trajectory was produced
by generation of inter photon timings based on the exponential
distribution ¢ ~ exp{—It}. Trajectories were generated with 2—7
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Figure 11. Characterization of resolving power by simulation. (A) Illustration of resolving power with the use of the binary segmentation algorithm.
L and R are respectively the left and right end points of a data segment of length n which contains a true change point k photons from the left end.
A detected change point c is considered resolved if the conservative 69% confidence region Cey does not include L or R. (B)—(E) Contour diagrams
of resolving power as functions of length k and total number of photons » at various intensity jump magnitudes. The dashed lines indicate cases
when the change point occurs at the middle of a data segment. In these simulations, a data segment composed of k (with parameter /; = 1) and n
— k (with parameter I, calculated for each case B—E) exponentially distributed random numbers are generated. The n point segment is then
subjected to analysis using our method at a type-I error rate oo = 0.1. For each (n, k) pair, the occurrence of a successful change-point detection and
resolution are accumulated. The resolving powers are computed by dividing the occurrences by the total number of simulations, 10,000, for each

(n, k) pair.

states and 50, 100, 250, or 500 change points. A total of 1000
simulations were run for each configuration, and each trajectory

was analyzed by the above method, using a type I error rate of
0.05.

To make a useful comparison, the bias in measurement of
parameters (intensity and occupancy) from the simulated
trajectories was scaled by the true value, bias(pm) = (pr — pm)/
P, Where p; and pp, are the true and measured parameters,
respectively. Bias in intensity and occupancy measurements are
shown in Figure 12. The bias is consistently positive for the
highest state in the trajectory and negative for the lowest state
in the trajectory. Bias for the intermediate states falls in order
between these two extremes. This is due to the stochastic nature
of photon counting data. Although the mean intensity of a state
is predetermined, the mean intensity of a particular instance of
that state will vary. The magnitude of the intensity change
between states will also vary, and, as shown earlier, larger
changes are more likely to be detected. Indeed, the change point
algorithm is intended to maximize differences in intensities
between the detected states. This introduces a natural extremism
in estimation of intensity levels, causing the bias observed.

The absolute value of the relative bias is very low (less than
3%) for trajectories with two states, even when the trajectory
only includes 50 change points. With more states in a trajectory
with the same number of change points, there will be fewer
instances of any particular state, thus reducing the sample size
and the quality of the statistics. This is reflected in the bias
measurements. As the length of the trajectory increases, the bias
decreases. In fact, given 500 change points, even a six state
trajectory has a relative bias less than 5% in intensity measure-
ments and less than 9% in occupancy measurements. These
errors represent a vast improvement over binning and thresh-
olding. Finding change points in a six state trajectory, let alone
accurate determination of the intensities of the various states,
would be completely impractical with a binning and thresholding
scheme.

Results from BIC determination of the number of states are
shown in Figure 13. As expected, the BIC estimate predicts at
least the true number of states, predicting the correct number
of states in the majority of cases. Occasionally, the BIC predicts
fewer states than the correct number. This is because the
conditions for the proof by Leroux* are not completely satisfied
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and are included in the supplemental information.

by the change point analysis detailed above, mainly due to the
uncertainties involved in change-point determination. Also, the
two-step analysis involved in change point detection means that
there is an inconsistency in computation of the BIC for one
state as opposed to its computation for more than one state.
This is the cause of the relative inaccuracy in applying this
procedure to a two state system. Our simulation studies also
suggest that, in applying to experimental data, it is important
to examine BIC values over many single molecules and report
on the most likely case. Despite these caveats, the BIC estimate
is remarkably effective. The accuracy of the estimate increases
consistently as the number of change points increases. Further-
more, estimation of the number of intensity levels exceeds 90%
accuracy in every case but one when given 500 change points.
The BIC procedure is thus a powerful method for accurately
determining the true number of states in a system.

4. Concluding Remarks

Many dynamic systems exhibit intermediate states that are
undetectable on the bulk level. These states and the transitions
between them are essential to a fundamental understanding of
the physical principles underlying these systems. Single-
molecule spectroscopy can be an effective tool for the detection
of these states; the ensemble average is undone and the existence
of these intermediates is made clear and compelling. However,
single-molecule measurements are made at the limits of optical
detection, relying on very few photons to draw conclusions.

Thus the possible advantages stemming from such experiments
are offset by the ubiquitous Poisson photon counting noise, often
making the result confusing and vague.

Our method provides a powerful and well characterized
procedure for the location of intensity change points in a time-
resolved trajectory. The Poisson statistics of photon detection
are an integral part of our data treatment, so there is no
ambiguity in deciding whether a transition occurs. Thus the
subjectivity often seen in thresholding approaches is removed.
Due to the photon-by-photon nature of the tests used, no
extraneous time scales are introduced and the data quality is
not arbitrarily reduced. It is therefore possible to achieve very
high time resolution using our method. Empirical binning of
photon counting trajectories is thus rendered superfluous. In
addition, no kinetic models are imposed. Thus the experimental-
ist may deduce from the data which models are justified. Each
intensity change point is provided with a significance level and
a confidence interval, so derivative parameters of physical
import can be determined quantitatively. Furthermore, this
approach generates a sequential analysis of the entire trajectory,
allowing a detailed treatment of nonstationary cases. This makes
our method complementary to correlation function ap-
proaches,*® 730 which often require the assumption of stationarity.

A direct application of our change point detection scheme is
the inference of the number and intensity of emissive states
present in a single molecule trajectory [A software package
inplementing this functionality can be found on our group
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website, http://picasso.cchem.berkeley.edu/software.html]. Our
study shows that the correct emission states can be quantitatively
recovered from a single molecule trajectory. Finally, we
emphasize the generality of these ideas. Our new approach
provides a framework for photon by photon analysis of change
points that can be extended to the treatment of any signal, two
important examples being wavelength and polarization. Once
the statistical distributions underlying the data are known, the
tests discussed above are directly applicable. It is hoped that
with this new method, which dramatically increases the amount
of information that can be extracted from a single molecule
trajectory, new and unexpected phenomena can be observed and
studied.
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Appendix A. Computation of Critical Regions

Under the H, hypothesis in which the single-molecule
emission intensity does not change for the N sequentially
recorded photons with an exponentially distributed inter-photon
duration {A;}, the probability that eq 5 picks up a change point
isPr(/p=1_(N);k=1,..,N— 1|T) = o, where o is the
type I error rate and 77__(N) is the critical region that depends
on both N and a. Worsley has shown that this probability is
equivalent to having N ordered random variables V) < V) < ...
< VN,\,_l in which each VQ’ = T/T, as defined earlier, is
enclosed by its lower a; and upper by bounds®*

Pri/r<t)_k=1,..N—1T)=Pr(a, =V, =< by
k=1,.,N—1 (17

Both a; and by, are functions of 77_, with k running up to N —
1 since k denotes the location of a change point. Noé’s algorithm
was originally developed to compute the distribution of Kol-
mogorov-Smirnov type order statistics,’® but if a; and by can
be found, it can be easily modified to calculate such probabilities
as eq 17. Owen has described an efficient way to implement
Noé’s algorithm.>! In our implementation, a; and by were found
by numerically solving /7 = 77_,(N) (cf. eq 4) at given o and
N using the zbrent subroutine from Numerical Recipes in C
modified for use with floating point operations that are 80 bit
or greater.”?> Both lower and upper bounds for the solution are
required for zbrent. In the present case, a; is bound by 0 and
k/N, and by, is bound by k/N and 1.

Once ay and by are determined eq 17 can be computed using
Noé’s algorithm. The critical region 77_,(N) then can be found
by numerically solving eq 17 using the modified zbrent
subroutine. Since 77_(N) is a monotonically increasing func-
tion of N, we set the lower bound for 77_,(N) to 77_ (N — 1)
for use in zbrent. For N = 2, the lower bound is found by trial
and error.

For the upper bounds, we use the asymptotic expression for
the critical region for generalized likelihood ratio test due to
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Figure 14. Numerical values of critical regions 77_, (—) as functions
of N for eq 5. Critical regions 7|24 (— —) for conservative confidence
intervals analogous to eq 9 are also plotted.

Gombay and Horvath,>* who found that the limiting distribution
of Z,]v/2

}/imPr{Z,l\,/z >\ =«

can be approximated by the distribution of another random
variable U(y) based on Ornstein-Uhlenbeck processes such that

Pr{oilylspr(y) > AT =0 (18)

where 0 <y < Y =1In[(1 — W — D/Al], k(N) =1 (N) =
(InN)*?/N, and the supremum, supo<y<yU(y), is the least upper
bound of U(y). The analytical expression of the distribution of
U(y) in eq 18 has been obtained by Vostrikova to give>

oo A2 —Ti_o2
_ (Tlfu e

29°1(d/2)

[Y— A S 0( 1 2)] (19)

Tl—a Tl—a (TI*(X)
where d is the dimension of the parameter to be tested and is
unity in the current case (one change point in intensity), and
I'(d) = f31¢7! e7" dr is the Gamma function. The asymptotic
critical region 77_, can be found by numerically solving eq 19
and serves as the upper bound for finding 77_,(N). We have
computed the critical regions of eq 5 for N = 1...1000 at o. =
0.31 (note that this does not correspond to one standard deviation
but is included here only as a reference), oo = 0.1, 0.05, and a
= 0.01. The results are plotted in Figure 14 as a function of N,
a portion of which is listed in Table 1.

Analogous procedures can be used to find the critical regions
T1—o for eq 6 by numerically solving eq 7. The results are plotted
in Figure 15 and partially listed in Table 1.

We next turn to computation of the critical regions 7;_4 (or
r]"_ﬁ) for S-level confidence intervals once the intensity change
point is found. The conservative confidence interval in eq 9 at
various N and f5 can be found by solving

PiZy— /=T p=1-B

N N
= Pr(akm =V, = bkm; k=1..N— 2)
where the scaling factor N/(N — 1) results from Worsley’s
approximation to conditionality of T and T in eq 8. Except for
the scaling factor, the numerical procedures for finding ax, by,
and 7,-4 are identical to those described earlier and are not

repeated here. The results are also included in Figures 14 and
15.
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Figure 15. Numerical values of critical regions 71— (—) and 7{_g4
(— —) as functions of N for eqs 6 and 9, respectively.

Finally, a note on the application of these results. Although
the standardized and weighted likelihood ratio test in eq 6 offers
a better performance than the classic test in eq 5, deviation of
type-1 error rate from ideality (cf. Figure 3) still exists and
becomes more deleterious as the number of data points n
increases. Through our simulation studies, we found that there
is no observable degradation of the performance of our method
when n < 1000. We therefore recommend that data sets be
processed in segments of less than 1000 photons. The break
point can be at a detected change point or, when there is no
change point within the 1000-photon segment, at a photon index
that allows at least a 200-photon overlap between consecutive
segments. The change points thus detected can then be combined
for the hierarchical clustering, expectation maximization, and
BIC analyses. There is thus no limit to the length of trajectories
that may be analyzed. A complete listing of numerical results
for the critical regions up to n = 1000 are provided in the
Supporting Information.
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